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We introduce a micro-optical model of soft biological tissue that permits numerical computation of the
absolute magnitudes of its scattering coefficients. A key assumption of the model is that the refractive-
index variations caused by microscopic tissue elements can be treated as particles with sizes distributed
according to a skewed log-normal distribution function. In the limit of an infinitely large variance in the
particle size, this function has the same power-law dependence as the volume fractions of the subunits
of an ideal fractal object. To compute a complete set of optical coefficients of a prototypical soft tissue
~single-scattering coefficient, transport scattering coefficient, backscattering coefficient, phase function,
and asymmetry parameter!, we apply Mie theory to a volume of spheres with sizes distributed according
to the theoretical distribution. A packing factor is included in the calculation of the optical cross sections
to account for correlated scattering among tightly packed particles. The results suggest that the skewed
log-normal distribution function, with a shape specified by a limiting fractal dimension of 3.7, is a valid
approximation of the size distribution of scatterers in tissue. In the wavelength range 600 # l # 1400
nm, the diameters of the scatterers that contribute most to backscattering were found to be significantly
smaller ~ly4–ly2! than the diameters of the scatterers that cause the greatest extinction of forward-
scattered light ~3–4l!. © 1998 Optical Society of America

OCIS codes: 170.6930, 350.4990, 290.0290.
1. Introduction

A growing number of applications of optical imaging
and spectroscopy in medicine rely on measurement of
the elastic scattering properties of tissue to detect
underlying pathology.1–4 Although it is recognized
that the optical properties of tissue are related to its
microstructure and refractive index, the nature of the
relationship is still poorly understood. Previous in-
vestigations have focused on various aspects of this
relationship, including the contribution of mitochon-
dria to the scattering properties of the liver,5 the
spatial variations in the refractive index of cells and
tissue sections,6–8 and the diffraction properties of
single cells.9,10 Still lacking, however, is a quantita-
tive model that relates the microscopic properties of
cells and other tissue elements to the scattering co-
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efficients of bulk tissue. Ideally, such a model
should be able to predict the absolute magnitudes of
the optical scattering coefficients as well as their
wavelength and angle dependencies. Moreover, to
assist in future efforts to invert measured data, the
model should give insight into how the scattering
properties are influenced by the numbers, sizes, and
arrangement of the tissue elements.

This paper presents a framework for a particulate
model of soft tissue that satisfies at least a few of
these requirements. We identify the major ele-
ments in soft tissue responsible for the microscopic
variations in its refractive index and, to facilitate
numerical computations, treat the variations as dis-
crete particles with statistically equivalent refractive
indices. A skewed form of the log-normal distribu-
tion function is introduced to represent the size dis-
tribution of the particles. In the limit of an infinitely
large variance in the particle size, this distribution
function describes the volume fractions of the sub-
units of an ideal fractal object. Using Mie theory
applied to a volume of spheres with diameters dis-
tributed according to the theoretical distribution, we
calculate the wavelength dependence of the single-
scattering coefficient, the transport-corrected scatter-
ing coefficient, and the asymmetry parameter of a
tissue model. In addition to these more common op-



tical constants, the phase function and backscatter-
ing coefficient are also calculated to study the
influence of the microscopic composition of tissue on
its angular scattering properties. Finally, we eval-
uate a complete set of optical coefficients of soft tis-
sues containing different proportions of connective
tissue fibers and make general observations about
the sizes of scatterers in tissue responsible for atten-
uation and backscattering of a propagating light
beam. The results suggest that the skewed log-
normal distribution function, with a shape specified
by the limiting fractal dimension, is a valid approxi-
mation of the distribution of sizes of scatterers in
tissue.

2. Theory

Soft tissue is composed of tightly packed groups of
cells entrapped in a network of fibers through which
water percolates. Viewed on a microscopic scale, the
constituents of the tissue have no clear boundaries.
They appear to merge into a continuous structure
distinguished optically only by spatial variations in
the refractive index. To model such a complicated
structure as a collection of particles, it is necessary to
resort to a statistical approach.

A. Refraction-Index Variations: Particle Approximation

The results of earlier studies suggest that the tissue
elements that contribute most to the local refractive-
index variations are the connective tissue fibers ~bun-
dles of elastin and collagen!, cytoplasmic organelles
~e.g., mitochondria!, and cell nuclei.7 Figure 1 is a
hypothetical index profile formed by measuring the
refractive indices along a line in an arbitrary direc-
tion through a volume of tissue composed of these
elements. The widths of the peaks in the index pro-
file are proportional to the diameters of the elements,
and their heights depend on the refractive index of
each element relative to that of its immediate envi-
ronment. Our goal here is to model the origin of the
index variations by a statistically equivalent volume
of discrete particles having the same index but dif-
ferent sizes. The index profiles in Fig. 1 illustrate
the nature of the approximation implied by this
model.

We first define the average background index as

Fig. 1. Spatial variations of the refractive index of a soft biological
tissue. A hypothetical index profile through several tissue ele-
ments is shown along with the profile through a statistically equiv-
alent volume of homogeneous particles. The indices of refraction
labeling the profiles are defined in Subsection 2.A.
the weighted average of refractive indices of the cy-
toplasm and the interstitial fluid, nc and ns, as

n# bkg 5 fc nc 1 ~1 2 fc!ns, (1)

where fc is the fraction of the fluid in the tissue con-
tained inside the cells. Estimated from the dis-
solved fractions of proteins and carbohydrates in the
intracellular and interstitial fluids, nc and ns are ap-
proximately 1.36 and 1.34, respectively.9 Since ap-
proximately 60% of the total fluid in soft tissue is
contained in the intracellular compartment, it follows
from Eq. ~1! that n# bkg 5 0.4~1.34! 1 0.6~1.36! 5 1.352.
Next we define the refractive index of a particle as the
sum of the background index and the mean index
variation,

n# p 5 n# bkg 1 ^Dn&, (2)

which can be approximated by another volume-
weighted average,

^Dn& 5 ff~nf 2 ns! 1 fn~nn 2 nc! 1 f0~n0 2 nc!. (3)

Here subscripts f, n, and o refer to the fibers, nuclei,
and organelles, which were identified above as the
major contributors to index variations. The terms in
parentheses in this expression are the differences
between the refractive indices of the three types of
tissue element and their respective backgrounds; the
multiplying factors are the volume fractions of the
elements in the solid portion of the tissue. The re-
fractive index of the connective-tissue fibers is about
1.47, which corresponds to 55% hydration of collagen,
its main component.11 The nucleus and the cyto-
plasmic organelles in mammalian cells that contain
similar concentrations of proteins and nucleic acids,
such as mitochondria and the ribosomes, have refrac-
tive indices that lie within a relatively narrow range
~1.39–1.42!.12,13 However, other cytoplasmic inclu-
sions, particularly pigment granules, can have much
higher refractive indices.9 In this study we assumed
nn 5 n0 5 1.40 so that fn and f0 need not be distin-
guished and Eq. ~3! can be written in a simpler form
as

^Dn& 5 ff~nf 2 ns! 1 ~1 2 ff!~nn 2 nc!. (4)

This equation expresses the mean index variation in
terms of the fibrous-tissue fraction ff alone. Colla-
gen and elastin fibers comprise approximately 70% of
the fat-free dry weight of the dermis,14 45% of the
heart,15 and 2–3% of the nonmuscular internal or-
gans.16 Therefore, depending on tissue type, ff may
be as small as ;0.02 or as large as 0.7. For nf 2 ns
5 1.47 2 1.34 5 0.13 and nn 2 nc 5 no 2 nc 5 1.40 2
1.36 5 0.04, the mean index variations that corre-
spond to these two extremes are, according to Eq. ~4!,
^Dn& 5 0.02~0.13! 1 ~1 2 0.02!~0.04! 5 0.042 and ^Dn&
5 0.7~0.13! 1 ~1 2 0.7!~0.04! 5 0.10. Therefore
these calculations suggest that the mean amplitude
of the index variations in soft tissue lies between 0.04
and 0.10.
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B. Particle Size Distribution

Having defined the refractive indices of the scattering
particles, we are left with the task of determining
their size distribution. The scattering centers in bi-
ological tissue span a wide range of dimensions and
tend to aggregate into complex forms suggestive of
fractal objects.17,18 Recently, the fractal properties
of tissue have been modeled by a distribution of par-
ticles whose number densities vary according to a
power law.6,19 Although a power-law distribution is
the appropriate description of an ideal fractal object,
the density functions of real objects rarely fit the
same power law over more than a couple of decades.20

In this study, we chose to employ a skewed logarith-
mic function to represent the distribution of sizes of
particles in tissue. This function is more plausible
on physical grounds, yet retains the essential char-
acter of the fractal description.

Written in its generalized form, the skewed loga-
rithmic distribution function is21

f ~x! 5 Cm xm expF2
~ln x 2 ln xm!2

2sm
2 G , (5)

where x is the distributed variable ~which can be
chosen to be the diameter, area, or volume of parti-
cles!, Cm is a normalizing factor, and the quantities
xm and sm set the center and width of the distribu-
tion, respectively. For m 5 21 and m 5 0, respec-
tively, Eq. ~5! is called the logarithmic normal
distribution and zeroth-order logarithmic distribu-
tion, respectively.21 Both distributions are used ex-
tensively in particle-size analysis. Here we treat
f ~x! as the volume fraction of particles of diameter d
and rewrite Eq. ~5! in terms of a new set of variables:

h~d! 5
Fv

Cm
d32Df expF2

~ln d 2 ln dm!2

2sm
2 G , (6)

with

Cm 5 smÎ2p dm
42Df exp@~4 2 Df!

2sm
2 y2#,

where h~d! is the volume fraction of particles with a
diameter d and Fv is the total volume fraction of the
particles, given by

Fv 5 *
0

`

h~d!dd. (7)

To establish a connection between the ideal fractal
distribution used in previous studies,6,7,19 we have
written the exponent in Eq. ~6! in terms of the ~volu-
metric! fractal dimension Df. Expressed in this way,
the distribution takes on increasingly scale-
invariant, or fractal, characteristics as its broadens.
The parameter sm sets the fractal range over which
the log–log slope of the distribution is approximately
constant. In the limit of an infinitely broad distri-
bution of particle sizes,

lim
sm3`

h~d! < d32Df. (8)
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For 3 , Df , 4, this power-law relationship describes
the dependence of the volume fractions of the sub-
units of an ideal mass fractal on their diameter d.22

For Df equal to 3 ~the Euclidean volume dimension!,
Eq. ~6! reduces to the logarithmic normal distribution
given by Eq. ~5!, with m 5 21.

C. Optical Coefficients.

If it is assumed that the waves scattered by the in-
dividual particles in a thin slice of the modeled tissue
volume add randomly, then the scattering coefficient
of the volume can be approximated as the sum of the
scattering coefficients of the particles of a given di-
ameter,

ms 5 (
i51

M

ms~di!, (9)

where

ms~di! 5
h~di!

vi
s~di!

and M is the number of particle diameters; ss~di! is
the optical cross section of an individual particle with
diameter di and volume vi. The volume-averaged
phase function of the tissue slice is the sum of the
angular-scattering functions of the individual parti-
cles weighted by the product of their respective scat-
tering coefficients,

P~u! 5
(
i51

M

ms~di!Pi~u!

(
i51

M

ms~di!

. (10)

Similarly, the asymmetry parameter, a measure of
the anisotropy of light scattering within the tissue, is
given by

g 5
(
i51

M

ms~di!gi~di!

(
i51

M

ms~di!

, (11)

where

gi~di! 5 *
21

1

cos uPi~cos u!d~cos u!

is the mean cosine of the scattering angle of an indi-
vidual particle of diameter di. The transport-
corrected scattering coefficient, which is used
extensively to model optical diffusion in thick tissues,
is defined in terms of the asymmetry parameter as mst
5 ms~1 2 g!. The volume-averaged backscattering
coefficient, a variable used in earlier studies to char-
acterize the reflectivity of microscopic samples,23 is
defined here as the sum of the particle cross sections



weighted by their angular-scattering functions eval-
uated at 180°,

mb 5 (
i51

M h~di!

vi
ss~di!Pi~180°!. (12)

Expressed in this manner, mb has units of mm21ysr,
so that the product of mb and the thickness of the
tissue slice yield the fraction of the incident irradi-
ance backscattered per unit solid angle in the direc-
tion opposite to the incident light.

D. Correlated Scattering

In the calculation of the total scattering concentra-
tion of a mixture of particles, the usual assumption is
that the particles scatter independently. However,
because correlated scattering is likely in fractal me-
dia to be characterized by a high concentration of
small particles, this assumption may be violated in
tissues characterized by a high fractal dimension.
Correlated scattering among particles with volume
fractions higher than ;1% has been found to reduce
the total scattering cross section when the diameters
of the particles are much less than a wavelength.24

In contrast, correlated scattering has been found to
be insignificant among particles with diameters
larger than a wavelength for volume fractions below
;10%.24 To account for interparticle correlation ef-
fects, Twersky25 derived an expression for the pack-
ing factor of a medium filled with a volume fraction h
of subwavelength-diameter spheres:

Ws 5
~1 2 h!4

~1 1 2h!2 . (13)

Ws can be regarded as the fraction by which the bulk
optical cross section diminishes as a result of corre-
lated scattering among the spheres. Recently, Bas-
com and Cobbold26 modified Eq. ~13! to account for
packing in a medium composed of scatterers with
different shapes. Their modified packing fraction is

Wp 5
~1 2 h!p11

@1 1 h~p 2 1!#p21 , (14)

where p is a packing dimension that describes the
rate at which the empty space between scatterers
diminishes as the total number density increases.
Although related, the packing and the fractal dimen-
sions need not be the same. Packing of spherical
particles is described well by a packing dimension
p 5 3, in which case Eq. ~14! reduces to Eq. ~13!. On
the other hand, the packing of sheetlike and rod-
shaped particles is characterized by packing dimen-
sions that approach 1 and 2, respectively. The
elements of tissue have all of these different shapes
and may exhibit cylindrical and spherical symmetry
simultaneously. For a medium of this type, the
packing dimension may lie anywhere between 1 and
5.26 Adopting Eq. ~14! as a general description of the
packing fraction, we approximate the effective vol-
ume fraction of scatterers with the same diameter d
as

h9~d! 5 Wph~d! 5
~1 2 h~d!!p11

@1 1 h~d!~p 2 1!#p21 h~d!.

(15)

When we calculate the optical coefficients using Eqs.
~9!–~12!, the correlation-corrected distribution h9~d!
replaces h~d!.

3. Numerical Evaluation of Optical Properties

The expressions developed in Subsection 2.C were
evaluated numerically to determine whether the
model yields credible estimates of the phase function
and the optical coefficients of tissue. Because of the
wide range of particle diameters over which the sum-
mations in Eqs. ~9!–~12! had to be evaluated, it was
not practical to employ conventional discretized inte-
gration techniques. Instead, we used ten mean
sphere diameters ranging from 50 nm to 25.6 mm in
powers of two to represent the particles in the tissue
model and their distributions. A Gaussian distribu-
tion ~FWHM 5 0.1di! of sphere sizes centered on the
mean diameters di was used to reduce the interfer-
ence structure of the individual spheres. Figure 2
illustrates the shape of the continuous distributions
for two values of Df ~3.7 and 3.2! and the method by
which the distributions were approximated by the
ten-sphere diameters. We chose to use spheres be-
cause this shape is consistent with the statistically
isotropic nature of the refractive-index model and
permits the application of Mie theory for calculation
of the optical coefficients. However, it should be rec-
ognized that tissues that contain aligned fiber layers
are not represented well by an isotropic model be-
cause their optical properties depend on the direction
in which they are measured.

Fig. 2. Distribution of the volume fractions of spheres to which
Mie theory was applied to calculate the scattering properties of
tissue. Solid and dashed curves are the continuous correlation-
corrected distributions given by Eq. ~15! for Df 5 3.7 and Df 5 3.2.
Dotted curves are the distributions of spheres with diameters in-
creasing in powers of two from 50 nm to 25.6 mm that represent the
Df 5 3.7 distribution. The partial volume fractions of the spheres
were adjusted to conform to h9~d!, with their total volume fraction
equal to Fv.
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For most of the simulations, the refractive indices
of the spheres and background medium were set
equal to 1.42 and 1.352, respectively, to model a tis-
sue with a refractive-index variation in the middle of
the range calculated in Subsection 2.A. We adjusted
the volume fractions of the spheres to scale according
to the skewed logarithmic distribution @Eq. ~6!#. The
total volume fraction occupied by the spheres was
estimated as Fv 5 1 2 Fw 2 Fpp, where Fw is the
weight fraction of water in the tissue and Fpp is the
fraction of organic solids in the combined interstitial
fluid and cytoplasmic spaces. We chose Fw 5 0.75
and Fpp 5 0.05 as representative of human soft tis-
sue27 and set Fv 5 0.2 to obtain the results given
below in Section 4. The width parameter sm was
fixed at 2.0 to match the fractal scaling range ob-
served in earlier experiments ~about one decade!,6
with dm set equal to the geometric mean of the min-
imum and maximum sphere diameters in microme-
ters, dm 5 @~0.05!~25.5!#1y2 5 1.13. The correlation-
corrected distribution @Eq. ~15!# with p 5 3, the
packing dimension for spheres, was applied in the
numerical calculations of the cross sections. To
compute the bulk optical coefficients of the modeled
tissue, we evaluated the optical cross sections in Eqs.
~9!–~12! in Subsection 2.C numerically, using a Mie-
scattering algorithm ~adapted from Ref. 28!.

4. Results and Discussion

A. Angular Scattering Function

Angular scattering functions of a typical soft tissue
represented by the ten-sphere numerical model are
plotted in Fig. 3. The magnitudes are plotted with-
out normalization for a range of fractal dimensions at
a fixed wavelength ~l 5 633 nm!. For comparison,
the angular-scattering functions of brain and muscle
measured experimentally by Flock et al.29 and Van

Fig. 3. Angular-scattering functions calculated with the ten-
sphere tissue model for Df 5 1, 3, 4, and 6. Measurements of the
angular scattering functions of muscle and brain that were taken
from published studies are shown for comparison. Model pa-
rameters: n# bkg 5 1.352, n# p 5 1.42, Fv 5 0.2, dm 5 1.13, sm 5 2,
p 5 3.
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der Zee et al.30 are shown in the same figure. With
the magnitude of the ratio between the indices of the
particles and background fixed, the shape of P~u! at a
given wavelength is determined primarily by Df. As
Df increases, the contribution of smaller particles in-
creases, leading to a shift in the scattered power from
the forward to the backward hemisphere.

Our results substantiate the observation of Gélé-
bart et al.19 that the phase function of a volume of
spheres with a narrow distribution of diameters is a
poor representation of the phase function of tissue.
A wide range of sizes of scatterers must be used in the
model to fit the shape of experimentally measured
phase functions. For Df in the range 3.5–3.9, the
shape of P~u! matches that of the phase functions of
the brain and muscle well ~Fig. 3!. The only major
discrepancy appears at angles close to the exact back-
scattering direction ~u 5 180°!. At these angles, the
amplitude of measured phase functions increases
sharply, whereas the model curves remain almost
flat. This sharp increase may be caused by the glo-
ry,31 a phenomenon associated with very-large-size
scatterers ~.100 mm! not included in our numerical
model, or it may be an experimental artifact caused
by incompletely suppressed reflections at the surface
of the tissue specimen. The similarity in the shapes
of the experimental and the theoretical curves
throughout most of the angular range supports the
supposition that particle sizes in tissue are distrib-
uted like a fractal with a dimension in the range 3 ,
Df , 4. Values of Df far outside of the fractal range
give unrealistically flat or peaked phase functions
characteristic of monodisperse distributions of Ray-
leigh or Mie scatterers ~see curves Df 5 6 and Df 5 1
in Fig. 3!.

B. Asymmetry Parameter

Figure 4 shows the computed magnitudes of the

Fig. 4. Magnitude and wavelength dependence of the asymmetry
parameter of a model tissue for values of the limiting fractal di-
mension Df between 3 and 4. The dependence is weakest for low
values of Df because large particles contribute more to the total
cross section. Model parameters: n# bkg 5 1.352, n# p 5 1.42, Fv 5
0.2, dm 5 1.13, sm 5 2, p 5 3.



asymmetry parameter g over the range of wave-
lengths between 600 and 1300 nm. The magnitude
of g of the model tissue is nearly independent of wave-
length for Df 5 3 and has a weak dependence on
wavelength for the higher values of Df shown. Most
of the experimental measurements of g that have
been made on biological tissues indicate that g ex-
ceeds 0.9 in the visible and near-infrared spectral
regions.32 Our model predicts g . 0.9 in these spec-
tral regions for fractal dimensions below approxi-
mately 3.7.

C. Scattering Coefficients

The scattering coefficients predicted by the tissue
model are plotted in Fig. 5 as a function of wave-
length for three different values of Df between 3 and
4. As expected, the magnitude of ms increases as the
fractal dimension decreases because the larger par-
ticles, which have the largest optical cross sections,
contribute relatively more to the total optical cross
section of the tissue. Our results show that fixing
the total volume fraction of particles and their refrac-
tive indices places upper and lower bounds on the
magnitude of the scattering coefficient. The model
predicts that a tissue consisting of a narrow distribu-
tion of large particles ~modeled by choosing small
values for Df and sm, and a large value for dm! would
have the highest value of ms in the visible spectral
range; a medium containing a narrow distribution of
particles sizes with its mean skewed toward small
diameters ~Df, sm large, and dm small! would have
the lowest value.

We observed that the scaling law for particle sizes
used in the model results in a remarkably simple
dependence of the total scattering coefficient on the
wavelength: ms ; l22Df. The exponent of this
power law is one less than the limiting fractal dimen-
sion of the volume-fraction distribution @Eq. ~6!#.

Fig. 5. Magnitude and wavelength dependence of the scattering
coefficient ms of a model tissue for values of the limiting fractal
dimension Df between 3 and 4. Dashed curves are plots of the
power-law function ms ' l22Df versus wavelength. Notice the
good fit of the curves for Df 5 3.5 and Df 5 4.0. Model parameters:
n# bkg 5 1.352, n# p 5 1.42, Fv 5 0.2, dm 5 1.13, sm 5 2, p 5 3.
The fitted curves in Fig. 5 illustrate the accuracy of
this approximation for different values of Df. The
deviation evident for Df 5 3 results from the correc-
tion for correlated scattering @Eq. ~15!#, which re-
duces the effective cross sections of the smallest
diameter particles.

In contrast to ms, the transport-corrected scattering
coefficient, mst, has a relatively weak dependence on
Df. Figure 6 shows that the magnitude of mst pre-
dicted by the model is between 1 and 2 mm21

throughout most of the visible and near-infrared
range for 3 # Df # 4. The implication of this result
is that mst is relatively insensitive to the shape of the
distribution of particle sizes; its magnitude is deter-
mined, for the most part, by the total volume fraction
and refractive indices of the particles. Although the
mst-versus-l curves are fitted well by power-law
curves, the log–log slope of the curves does not appear
to have a simple relationship with Df.

The magnitude and the wavelength dependence of
mb are shown in Fig. 7. Like mst, mb has a weak
dependence on Df. However, in contrast to the
smooth decline in the magnitude of mst wavelength,
mb has a nonmonotonic dependence, first declining
steeply in the visible region and then leveling off to a
nearly constant value in the near infrared. This be-
havior is a consequence of the strong wavelength de-
pendence of the scattering cross section of the
subwavelength particles that contribute most to the
total backscattering coefficient ~see discussion in
Subsection 4.E!.

D. Optical Properties of a Soft Tissue Model:
Comparison with Measured Values

Table 1 summarizes the optical properties predicted
by the model at three wavelengths ~l 5 633, 800, and
1300 nm! for a soft tissue containing different dry-

Fig. 6. Magnitude and wavelength dependence of the scattering
coefficient mst of a model tissue for values of the limiting fractal
dimension Df between 3 and 4. The dependence of mst on wave-
length is weaker compared with that of ms ~see Fig. 5!, and its
log–log slope does not have a simple dependence on Df. Model
parameters: n# bkg 5 1.352, n# p 5 1.42, Fv 5 0.2, dm 5 1.13, sm 5
2, p 5 3.
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weight fractions of connective tissue fibers ~ ff 5 0.03,
0.3, and 0.7!. The coefficients ms, mst, mb, and g in the
table were computed for Df 5 3.7, the fractal dimen-
sion that yielded values that correspond best overall
to available measurements. This value of Df is also
close to the fractal dimensions estimated by Fourier
analysis of phase-contrast micrographs of fresh tis-

Fig. 7. Magnitude and wavelength dependence of the backscat-
tering coefficient mb of the model tissue for values of the limiting
fractal dimension Df between 3 and 4. Model parameters: n# bkg

5 1.352, n# p 5 1.42, Fv 5 0.2, dm 5 1.13, sm 5 2, p 5 3.
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sue sections in Ref. 6. ~Note that the fractal dimen-
sions given in this reference are given as area
dimensions and therefore are one less than the volu-
metric dimensions used in this study.! Unfortu-
nately, the accuracy of the predicted coefficients
cannot be established at present because measure-
ments of all four coefficients on living tissue are not
available. However, measurements of the optical
properties of excised tissue made by a number of
researchers over the past decade have been compiled
by Cheong et al.32 Table 2 lists a set of coefficients
selected from this compilation. The correspondence
of these coefficients with the model results in Table 1
is discussed below.

The average value of ms measured at 633 nm on the
different soft tissue types shown in Table 2 is 22
mm21, the same as the value that we found for the
model tissue with ff 5 0.3, a proportion of connection
tissue fibers about midway between the physiological
extremes estimated in Subsection 2.A ~ ff 5 0.02 and
ff 5 0.7!. The strong dependence of the magnitude
of the scattering coefficients on ff underscores the
sensitivity of scattering in tissue to the mean varia-
tion in the refractive index. In accordance with the
model results, the measurements indicate that the
magnitude of ms measured on the same tissue de-
creases substantially with wavelength. For exam-
ple, Parsa et al.33 measured a decrease in ms of rat
liver from 14 mm21 at 633 nm to 4.4 mm21 at 1300
Table 1. Optical Coefficients of Model Tissues with Three Different Dry-Weight Fiber Fractions ~ff !, for Df 5 3.7

Coefficient

Wavelength ~nm!

633 800 1300

ff 5 0.03 ff 5 0.3 ff 5 0.7 ff 5 0.03 ff 5 0.3 ff 5 0.7 ff 5 0.03 ff 5 0.3 ff 5 0.7

ms ~mm21! 10.5 22.4 40.2 6.9 14.6 27.4 2.9 6.3 11.9
mst ~mm21! 0.80 2.0 4.5 0.57 1.4 3.2 0.30 0.75 1.65
mb ~mm21ysr! 0.08 0.22 0.50 0.05 0.13 0.31 0.03 0.09 0.20
g 0.92 0.91 0.89 0.92 0.90 0.88 0.90 0.88 0.86

Table 2. Published Optical Properties of Tissues at Selected Wavelengths

Tissue Type ms ~mm21! mst ~mm21! mb ~mm21ysr! g Wavelength ~nm! Reference

Aorta ~human! 31.6 4.1 — 0.87 633 Yoon et al.35

17.1–31.0 2.6–3.7 — 0.81–0.91 633 Keijzer et al.34

23.3 2.3 — 0.9 1320 Essenpreis40

Aorta ~rat! 14.0–22.0 — 0.16 6 0.1 — 800 Schmitt38

11.0—20.0 — 0.05 6 0.05 — 1300 Schmit38

Cartilage ~human! 24.6 — — 0.95 633 Qu et al.36

Liver ~rabbit! 19.0 0.89 — 0.934 633 Beek et al.39

Liver ~rat! 14.4 0.72 — 0.95 633 Parsa et al.33

9.7 0.58 — 0.94 800 Parsa et al.33

4.4 0.40 — 0.91 1300 Parsa et al.33

Myocardium ~rabbit! 16.0–19.1 1.1 — 0.93–0.94 633 Beek et al.39

Skin, dermis ~pig! 28.9 2.1 — 0.93 633 Beek et al.39

25.4 1.4 — 0.95 790 Beek et al.39



nm. Their measured values of ms are close to those
calculated for the model tissue with ff between 0.03
and 0.3, and the calculated and measured scattering
coefficients have nearly the same power-law depen-
dencies on wavelength: ms ' l21.7 ~predicted! ver-
sus ms ' l21.8 ~measured!.

The calculated value of g for the model tissue at 633
nm is approximately the same as the value measured
for the aorta by Keijzer et al.34 and Yoon et al.,35 but
the measured values of g in Table 2 are somewhat
smaller for the rest of the tissues shown. The
angular-scattering properties of tissues may reflect
the relative contributions of the nuclei and the
smaller organelles, such as the mitochondria.9 The
slow decline with wavelength in the magnitude of g
predicted by the model is substantiated by the mea-
surements of Parsa et al.33 on rat liver ~Table 2!, but
other investigators have found that g may also in-
crease with wavelength.36,37 The wavelength de-
pendence of g is difficult to measure experimentally
because the narrow forward-scattering peak of the
phase function of tissue ~see Fig. 3! makes averaging
over angles prone to error.

The two measured values of mb listed in Table 2
were derived from the average magnitude of interfer-
ence signals recorded in an earlier study by an
optical-coherence microscope viewing an excised
specimen of the aorta in the reflection mode.38 The
average backscattered powers, measured at l 5 800
nm and l 5 1300 nm relative to the incident powers,
were found to equal 242 and 247 dB. Taking into
account the thickness of the sample volume ~20 mm!
and the numerical aperture of the microscope ~0.04!,
we calculated mean values of mb equal to 0.16 and
0.05 mm21ysr, respectively, at l 5 800 nm and l 5
1300 nm. These values agree fairly well with the
backscattering coefficients of the model tissue calcu-
lated at the same wavelengths for ff 5 0.3 ~mb 5 0.13
mm21ysr at l 5 800 nm and mb 5 0.088 mm21ysr at
l 5 1300 nm!. However, because of the interference
noise in the measured signals, the precision of the
measured values is poor. Additional studies need to
be carried out to test the validity of the calculated
backscattering coefficients.

E. Dominant Particle Sizes for Attenuation and
Backscattering

An attractive feature of the tissue model is that it
permits identification of the sizes of the particles in
tissue that contribute most to attenuation and back-
scattering of light at a given wavelength. Figure 8
shows the contributions of each sphere size to the
total scattering coefficient and backscattering coeffi-
cient in the ten-sphere model with Df 5 3.7 and ff 5
0.3. The widths of the distributions mb~di! and
ms~di! indicate the wide range of particle sizes that
are responsible for scattering in tissue. A conve-
nient measure of the size of the particles that con-
tribute most to extinction at a given wavelength is
the centroid, ^d&ext 5 ¥i dims~di!y¥i ms~di!; defined in
a similar way, the centroid ^d&bk 5 ¥i dimb~di!y¥i
mb~di! is a convenient measure of the size of the par-
ticles that contribute most to backscattering. The
calculated centroids of the distributions in Fig. 8 for
l 5 633 nm are ^d&ext 5 2.4 mm and ^d&bk 5 0.29 mm.
At the longer wavelength, l 5 1300 nm, the centroids
shift toward larger values, ^d&ext 5 4.0 mm and ^d&bk
5 0.38 mm. From these results we conclude that the
particles in tissues with diameters between ly4 and
ly2 are the dominant backscatterers, whereas the
particles that cause the greatest extinction of
forward-scattered light have diameters between 3
and 4l. An implication of this finding that pertains
to optical-coherence microscopy and other thick-
tissue imaging modalities is that large particles that
attenuate a focused probe beam strongly may limit
the penetration of the beam, yet backscatter too
weakly to be seen. Conversely, small particles that
backscatter strongly may cause little attenuation of a
focused beam and therefore have a negligible effect
on its penetration.

5. Summary and Conclusions

In this study we have developed a micro-optical
model that explains most of the observed scattering
properties of soft biological tissue. The model treats
the tissue as a collection of isotropic scattering par-
ticles whose volume fractions are distributed accord-
ing to a skewed log-normal distribution @Eq. ~6!#
modified by a packing factor @Eq. ~14!# to account for
correlated scattering among densely packed parti-
cles. Ratios between the refractive indices of the

Fig. 8. Contributions of the different sizes of spheres in the ten-
sphere model to the total scattering coefficient ms and backscatter-
ing coefficient mb of the model tissue for ~a! l 5 633 nm and ~b! l
5 1300 nm. The calculated values of the centroids of the distri-
butions ms~d! and mb~d! are labeled on the x axes as ^d&ext and ^d&bk,
respectively. Model parameters: Df 5 3.7, n# bkg 5 1.352, n# p 5
1.42, Fv 5 0.2, dm 5 1.13, sm 5 2, p 5 3.
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particles and background were derived from statisti-
cal arguments about the relative proportions of the
microscopic elements of tissue and were found to
range from 1.39y1.352 to 1.452y1.352, which corre-
spond to dry-weight fractions of fibers between 0.03
and 0.3. After evaluating the model by applying Mie
theory to a collection of spheres with a wide range of
sizes, we found a set of parameters for the distribu-
tion and packing of the particles ~Fv 5 0.2, Df 5 3.7,
sm 5 2, dm 5 1.13, p 5 3! that yields credible esti-
mates of the scattering coefficients and asymmetry
parameters of representative soft tissues. Applying
this model, we observed the following: ~1! as an op-
tical medium, tissue is represented best by a volume
of scatterers with a wide distribution of sizes, ~2!
fixing the total volume fraction of particles and their
refractive indices places upper and lower bounds on
the magnitude of the scattering coefficient, ~3! the
scattering coefficient decreases with wavelength ap-
proximately as ms ; l22Df for 600 # l # 1400 nm,
where Df is the limiting fractal dimension, and ~4!
scatterers in tissue with diameters between ly4 and
ly2 are the dominant backscatterers; the scatterers
that cause the greatest extinction of forward-
scattered light have diameters between 3l and 4l.

We hope that the model developed in this study will
provide a starting point for further exploration of the
micro-optics of tissue. Remaining problems include
the influence of the arrangement of tissue elements
on coherent optical scattering and the origins of the
variability in the scattering coefficients of normal and
pathological tissues.
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