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Abs t rac t .  This paper is the first of two reviewing the propagation of electromagnetic radiation of 
wavelength 0.25-10 t~m in tissue. After a brief discussion of light/tissue interactions, a mathematical  
description of light propagation in terms of radiative transfer is developed. Formal solutions of the 
resulting equation are outlined, but the emphasis is on approximate method of so lu t ion- -namely  the 
discrete ordinates method, the technique of functional expansion and Monte Carlo simulation. The 
application of the simplest of these approximate methods, namely the 2-flux and diffusion models, to 
tissue optics is discussed in some detail. The second paper deals with the optical properties of tissue 
and the salient characteristics of light fluence distributions in these tissues. 

INTRODUCTION 

The rapidly increasing use of ultra-violet, visi- 
ble and infra-red radiation in both diagnostic 
and therapeutic medicine has created a need to 
understand how this radiation propagates in 
tissue. Such knowledge is necessary for the opti- 
mum development of therapeutic techniques 
and for the quanti tat ive analysis of diagnostic 
measurements.  For example, the local tissue 
temperature is of prime importance in laser 
surgery and depends, in turn, on the spatial 
distribution of the incident radiation. This vari- 
able is also of central importance in photodyna- 
mic therapy of cancer where the local biological 
effect is directly related to the light fluence. 
Diagnostic methods which use fluorescent, scat- 
tered, or t ransmitted light to measure para- 
meters such as drug concentration and blood 
oxygenation also require detailed information 
about the propagation of the excitation and 
observed light. The general problem is illus- 
trated in Fig. 1. A tissue of arbitrary geometry, 
whose optical properties (to be defined and dis- 
cussed) may be functions of position and time, is 
irradiated by external and/or internal sources 
of light. A complete solution describes the time 
dependence of the electromagnetic field at any 
point. There are three basic requirements  in 
solving this problem. These are: 

(i) a mathematical  description of the interac- 
tion of optical radiation with tissue; 

(ii) information about the optical properties of 

the irradiated tissue (usually provided by 
experiment) and; 

(iii) workable solutions of the mathematical  
equations to provide sufficiently accurate 
calculations under circumstances of 
biomedical interest. 

It is the purpose of this paper and a compan- 
ion article (1) to examine each of these require- 
ments  for electromagnetic radiation in the 
wavelength range of 0.25-10 t~m. The first pap- 
er begins with a brief discussion of the possible 
mechanisms of light interaction with tissue, but  
at tention will be focused on linear problems 
with time independent optical properties. We 
will describe two mathematical  constructs 
which have been used to study radiation prop- 
agation in scattering media, multiple scatter- 
ing electromagnetic theory and radiative trans- 
fer theory. Detailed discussion will be limited to 
the latter, as multiple scattering theory has yet 
to be fruitfully applied to tissue optics. We will 
then review methods by which useful solutions 
to the radiative transfer equation may be 
obtained. Although many techniques have been 
applied, only those which have proved most use- 
ful in tissue optics, namely 2-flux models, diffu- 
sion theory and Monte Carlo simulation will be 
discussed in detail. For the most part, steady- 
state (time-independent) transport  problems 
will be considered, but we will also show some 
instances where models of pulse propagation 
have been essential. 

In the second paper we will summarize the 
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current knowledge of tissue optical properties 
in the wavelength range 0.25-10txm. These 
properties can be measured in a variety of ways 
ranging from direct measurements  of interac- 
tion coefficients on excised, optically thin sam- 
ples, to indirect non-invasive methods suitable 
for in vivo application. A review of these 
methods and their  limitations will be presented. 
Finally, we will identify wavelength regimes 
where absorption processes dominate scatter- 
ing, where scattering is dominant,  and where 
the two are comparable. The nature of the light 
fluence distribution in tissue in these different 
regimes is described, along with the radiation 
propagation models which may be successfully 
employed in each. 

THE MATHEMATICAL DESCRIPTION OF 
RADIATION PROPAGATION 

In an excellent review paper, Boulnois (2) iden- 
tiffed four categories of photophysical processes 
in light/tissue interactions: photochemical, 
thermal,  photoablative and electromechanical. 
Photochemical interactions involve the absorp- 
tion of light by specific molecules present in, or 
added to, the tissue. Such interactions are the 
basis for photodynamic therapy. Thermal in- 
teractions are those where the observed biolo- 
gical effect is due to the deposition of heat in the 
tissue. Most current laser surgery falls into this 
category. Photoablative interactions can occur 
in the ultra-violet where photons possess suffi- 
cient energy to cause the dissociation of biopo- 
lymers and the subsequent desorption of frag- 
ments. This effect is observed for 10 ns pulses at 
a threshold fluence rate of about 10Sw cm 2. 
The fourth category is the electromechanical 
interaction which occurs at fluence rates of 
approximately 10t~ cm 2 for nanosecond 
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Fig. 1. Solution of the general problem in tissue optics gives 
the electromagnetic field at an arbitrary location, P, as a 
function of time. The tissue has an arbitrary geometry and 
optical properties which may be functions of position and time. 
The tissue may be irradiated by external or internal (S) 
sources of light. 

pulses and 10t2W cm -2 for picosecond pulses. 
The intense electric field present during these 
pulses causes dielectric breakdown of the tissue 
and the formation of a small volume plasma. 
The expansion of this plasma creates a shock 
wave which can mechanically rupture tissue. 
The last two classes of interaction are complex, 
threshold, nonlinear effects and we will not con- 
sider them further in this paper. Instead, we 
will confine our attention to situations where 
the optical properties of the tissue are time in- 
var iant  and independent of the light field so 
tha t  the local absorbed energy rate is pro- 
portional to the local energy fluence rate. 

Light which enters tissue can be scattered 
and absorbed. The relative probability of these 
processes in a given tissue depends on 
wavelength as will be discussed in detail in Part  
II of this review (1). In most problems in tissue 
optics, multiple light scattering is important 
and any useful theory must account for this. 

Multiple scattering electromagnetic theory 
(3) can, in principle, be used to describe the 
propagation of light in tissue. Tissue could be 
considered as a random medium whose permit- 
tivity, e(r), fluctuates with position about some 
mean value el, so that  

e(r) = el + e2(r) (1) 

where e2(r) is a random process whose impor- 
tan t  characteristics (i.e. variance and correla- 
tion length) are known. The statistical be- 
haviour of the electric field can then be 
described using Maxwell's equations. While 
physically appealing, this formalism has yet to 
find application in tissue optics because of its 
complexity, the lack of readily applied solutions 
and the lack of information about e2(r). 

The usual approach, and the one which we 
shall follow in this review, is called radiative 
transfer theory. The important variable in this 
description is the energy radiance, L(r, #) 
which is defined such that,  at position r, the 
energy carried per unit  time by photons in an 
elemental solid angle d~  about a direction [2 
through an infinitesimal area dA oriented nor- 

Lasers in Medical Science 1991 (~ Bailliere Tindall 



Propagation of Optical Radiation 

mal  to ~ is L(r, ~)  dA d~ .  This  q u a n t i t y  has  also 
been  called the  specific i n t ens i ty  in the  as t ro-  
physica l  l i t e ra tu re .  To avoid such confusion,  we 
have  compiled in Tab le  1 a l ist  of def in i t ions  and  
symbols  for quan t i t i e s  we will use in our  discus- 
sion of r ad i a t i ve  t rans fe r .  

In  s t a t i ng  the  equa t ion  of r a d i a t i v e  t r ans fe r ,  
we will res t r ic t  our  a t t en t i on  to m o n o c h r o m a t i c  
l ight  and  avoid the  compl ica t ions  of  ine las t ic  
sca t t e r  and  f luorescence (a l though  these  could 
be incorporated) .  We m u s t  also def ine a set  of 
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i n t e r ac t ion  coefficients  (see Tab l e  1). The  
absorp t ion  coefficient,  tZa, is the  p robab i l i t y  per  
i n f in i t e s ima l  p a t h  l eng th  t h a t  a pho ton  will be 
abso rbed  by the  t issue.  The  sca t t e r  coefficient  tLs 
is s i m i l a r l y  defined. To comple te  the  descr ip t ion  
of sca t te r ,  we m u s t  also include the  a n g u l a r  
dependence  t h r o u g h  the  d i f fe ren t ia l  s c a t t e r i n g  
cross-sect ion dtLs(r, f2' --~/)), which  is the  prob- 
ab i l i ty  t h a t  a pho ton  m o v i n g  in i t i a l ly  in a direc- 
t ion  ~2' is s ca t t e r ed  to a new di rec t ion  Y2. I t  is 
c u s t o m a r y  to a s s u m e  t h a t  the  d i f fe ren t ia l  scat-  

Table 1. Brief definitions of physical quantities used in this paper and their associated symbols and SI units 

Name of quantity Definition Symbol Unit 

Photon number Number of photons emitted, transferred or received N 
Radiant energy Energy of photons emitted, transferred or received 

(hvN) J 

Radiant energy flux dN W 
dt 

Radiant energy fluence dN ~ j m_2 
dA 

Where dN photons are incident on a sphere of cross- 
sectional area dA 

Radiant energy fluence rate 

Energy radiance Energy transported by photons in direction ~ per 
unit solid angle per unit t ime per unit area 

Linear absorption coefficient Probability of photon absorption per infinitesimal 
pathlength 

Linear scattering 
coefficient 
Linear attenuation 
coefficient 
Mean free path 
Single scattering albedo 
Differential scattering 
coefficient 

Scattering phase function 

Mean cosine of scattering 
angle or anisotropy 
parameter  
Transport scattering 
coefficient 
Specular reflectance 

Scattered reflectance 

Total reflectance 
Internal reflectance 

Primary transmittance 

Scattered transmittance 

Total transmittance 

Probability of photon scatter per infinitesimal 
pathlength 

/a a +/z s 
1/#t 

/z~//zt 
Probability of scatter from an initial direction 1)' to 

a final direction ~1 per unit solid angle per 
infinitesimal path length 

The differential scattering coefficient normalized 
so that  f4~ f(~)' --* Y~) dI) = 1 

(1 - g)tz s 
Fraction of incident light flux reflected by 

irradiated surface 
Fraction of incident light flux scattered through 

irradiated surface 
Rsp + Rs 

Fraction of internal light flux incident on tissue 
surface and reflected back into the tissue 

Fraction of incident light flux transmitted without 
interaction 

Fraction of incident light flux transmitted after 
scattering 

Tp + Ts 

W m  -2 

L(Y2) W m -~ s r  - 1  

/1, a m - 1  

/z s m -1 

/~t m -1 
m 

a 

dt~s(t)' ~ t)) m -1 sr -1 

f (~ '  -~ f2) sr -1 

g 

Zsp 

Rs 

R i  

T p  

Ts 
Tt 

m - 1  
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tering coefficient is independent of incident 
photon direction so that  

dtzs(D' --* t)) = dtzs(f2'.f2). (2) 

This assumption is probably valid for 'random- 
ly' organized soft t issues but  may not be true for 
highly structured tissues such as muscle (4). 
Clearly, the total scattering coefficient is given 
by the integral over solid angle 

/Zs = f4= d#s(D' --* #)d# .  (3) 

In radiative transfer theory a normalized ver- 
sion of the differential scattering coefficient, 
called the phase function, is often used. This 
probability density function is defined by 

f(~'.[2) = ---1 d/~s([2'.D). (4) 
/zs 

The mean cosine of scattering angle (sometimes 
called the anisotropy factor) is the average 
value of (f2'.D) and is denoted by g. Note that  for 
isotropic scattering g = 0 and that  g ---> 1 as 
scattering becomes more forward peaked. The 
total interaction or a t tenuat ion coefficient,/z t is 
given by 

/-St = P ' a  -{- /[s ( 5 )  

and to complete the mathematical  description, 
we include a source of photons, s(r, f2). 

The equation of radiative transfer can be de- 
rived by considering the radiant  energy balance 
in an arbi t rary elemental volume of tissue. The 
details of this derivation have been given by 
many authors and the final result  is 

[2. FL(r, f2) + /zt(r)L(r , [2) = 

f4~ d/2~'d#s(r, f2' ~ f2)L(r, f2') + s(r , /))  (6) 

where the first term represents the net change 
due to energy flow, the second term radiance 
lost due to absorption and scatter, the third 
term the gain in radiance due to scatter from all 
other directions, and the fourth term the 
radiance source defined above. 

Two other complexities have been omitted 
from Eq. (4), namely time dependent radiance 
and polarization. The first simplification is un- 
important  unless we are interested in the evolu- 
tion of L(r, f2) or other time dependent quanti- 
ties during a short light pulse. If the incident 
pulse is long compared to photon lifetimes in the 
medium, then the steady-state solution is prob- 
ably adequate. Even if this condition is not met, 
the quant i ty  of interest is often the time integ- 
ral of a radiance dependent parameter,  for ex- 
ample the total absorbed energy. It can be 
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shown that, for linear transport, such time in- 
tegrals can be determined from knowledge of 
the steady-state solution. However, recent de- 
velopments in diagnostic applications of 
picosecond light pulses (5) has spurred the de- 
velopment of time-dependent models, and some 
specific applications will be discussed below. 

Polarization can be included in the formula- 
tion of radiative transfer. This is done by using 
the Stokes parameters  (6) to describe the polar- 
ization and deriving four, instead of one, radia- 
tive transfer equations. In an intensely scatter- 
ing medium such as tissue, Svaasand and Gore- 
er (7) have shown evidence that  incident light 
rapidly becomes unpolarized and polarization 
effects are therefore generally unimportant.  

The basic assumption in radiative transfer 
theory is that  we can ignore the wave nature of 
light and simply consider the flow of energy 
within the medium. The physical foundation of 
this theory is, therefore, not as satisfactory as 
that  for multiple scattering theory. Ishimaru 
(3) and Fante (8) have shown that, under certain 
conditions, the energy radiance can be equated 
to the average Poynting vector and that the two 
t rea tments  are mathematical ly equivalent. It is 
not clear whether  these conditions are met for 
optical radiation in tissue but to date only one 
experiment has demonstrated a macroscopic 
effect which cannot be predicted by radiative 
transfer. Yoo et al (9) reported the observation 
of a coherent peak in the light backscattered by 
t i s sue - -an  interference phenomenon which has 
been observed with a variety of dense scattering 
materials.  In the next section, we will examine 
methods by which useful solutions of the radia- 
tive transfer equation can be obtained. 

SOLUTIONS OF THE RADIATIVE TRANSFER 
EQUATION 

Problems in radiative transfer similar to those 
in tissue optics are encountered in many fields 
of science. The propagation of light in planetary 
and stellar atmospheres (10), in the ocean (11), 
and the propagation of neutrons in a reactor 
(12), have all been described by the equation of 
radiative transfer or its equivalent, the linea- 
rized Boltzmann particle transport equation. 
Many different mathematical  approaches have 
been used in solving this equation. The best 
method depends on the information sought and 
the accuracy required. For example, an astro- 
nomer might be most interested in the light 
reflected by a planetary atmosphere and not the 
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radiance within the atmosphere. On the other 
hand, this variable is of prime importance to the 
oceanographer or the investigator in tissue op- 
tics. A complete review of the mathematical  
solution of the radiative transfer equation is 
beyond the scope of this paper. The interested 
reader might consult the review articles by 
Hansen and Travis (6), Irvine (13), or Hunt  (14) 
for more complete discussions. Other works res- 
tricted to one method will be referred to in the 
following subsections. While we will briefly dis- 
cuss general methods for solving the equation of 
radiative transfer, we will focus on methods 
which have been successfully applied in tissue 
optics--the 2-flux, diffusion and Monte Carlo 
techniques. 

Formal solutions of the radiative transfer 
equation 

In this section, we briefly describe methods by 
which analytic solutions of the radiative trans- 
fer equation have been obtained. While these 
solutions are 'exact' in the sense that  the 
radiance can be expressed in mathematical  
terms (usually in integral form), the actual eva- 
luation of the solution usually involves numer- 
ical methods and may lead to results which are 
no more accurate than so-called approximate 
solutions. 

Method of successive orders 

One 'brute force' method of solving for the 
radiance is to consider contributions at a point 
due to light which has been propagated unscat- 
tered from the source, that  which has been scat- 
tered once, that  which has been scattered twice, 
etc. These contributions are shown schemati- 
cally in Fig. 2. The radiance can then be formal- 
ly written as the sum of all these contributions 

L(r,/~) = ~ Ln(r, t)) (7) 
n 

Fig. 2. Schematic illustration of the method of successive 
orders. The radiance at P can be expressed as the sum of all 
contributions due to unscattered photons, photons which 
have been scattered once, those which have been scattered 
twice, etc. 
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where Ln(r, t)) is the radiance due to photons 
scattered n times. In practice, one calculates a 
source function for nth order scatter by integra- 
tion over all incident directions of the (n - 1)th 
order radiance multiplied by the phase func- 
tion. The nth order radiance term is then calcu- 
lated by integration of the nth order source 
function over all space. 

This method is practical for relatively thin 
layers but converges very slowly for thick 
layers unless the single scattering albedo (a = 
txs//xt) is much less than one. Van de Hulst  and 
Irvine (15) have noted tha t  the ratio of succes- 
sive terms approaches a constant so tha t  the 
sum in Eq. (7) can be terminated after a finite 
number of terms and the remainder replaced 
with a geometric series. One very attractive 
feature of the successive orders method is that  if 
a problem is solved for a specific albedo, then 
the solution for any other albedo is easily 
obtained. The detailed application of the 
method to homogeneous media with arbi trary 
phase functions is discussed by Irvine (16). 

Solution in terms of X, Y functions 

This classical method of solving the equation of 
radiative transfer has been fully developed for 
the case of a homogeneous slab with a phase 
function that  can be expanded in a series of 
Legendre polynomials. This method has 
evolved from the early work of Chandrasekhar,  
Busbridge, Mullikin and Sobolev, and has been 
summarized by van de Hulst (10). 

In this technique, the radiance at the entrance 
and exit surfaces of the slab is expressed in 
terms of X and Y functions. These functions are 
themselves the solution of non-linear integral 
equations which, while not presented here, can 
be assigned a simple physical meaning as de- 
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scribed by Chandrasekhar  (17). Using the polar 
angle 0, the azimuthal angle (b, and the depth 
variable, z, the radiance is L(z, 0, 6). If radiation 

Lo 
Line(0, 0, 6) - ]cos 0] (8) 

is incident on the top face of the slab, the total 
radiance at the surface will be the sum of this 
term and a diffusely reflected term, L r e f ( 0  , 0, (b). 
The relative change in radiance due to the pre- 
sence of the slab is given by X(d, 0) where 

Line(0  , 0, qS) + Lref (0  , 0, (b) 
X(d, 0) = (9) 

Line(0,  0, (b) 

and d is the slab thickness. Similarly Y(d, 0) 
represents the relative change in radiance at 
the exit surface of the slab. 

X and Y functions have been tabulated for 
isotropic and linearly anisotropic phase func- 
tions, but  the numerical  evaluation of the integ- 
ral expressions becomes very complex if more 
than three terms are retained in the Legendre 
expansion of the phase function. Van de Hulst  
(10) questions the value of the method for highly 
anisotropic scattering. While the method has 
been used most extensively to study the 
radiance at the slab surfaces, Sobolev (18) has 
solved for the radiance at depth in terms of X 
and Y functions. 

Method of eigenfunction expansion 

This method, developed by Case and Zweifel 
(19) for a slab geometry leads to a general solu- 
tion for the radiance at arbi t rary depth within 
the slab. The solution of the radiative transfer 
equation is obtained as an expansion in a series 
of solutions to the homogeneous part  of the 
equation. Part icular  solutions of the form 

e -z~J" qb m (cos 0)(1 - cos 2 0) m/2 COS m(b (10) 

can be found where qb m is the radiance eigen- 
function and v is the corresponding eigenvalue. 
The method consists of finding the eigenvalues 

Fig. 3. Schematic illustration of the doubling method for 
calculating the radiance at the surfaces of an infinite slab. It is 
assumed that the radiance at the entrance (R) and exit (T) 
surfaces is known for irradiation from any direction (I). The 
radiance for a slab which is twice as thick can be calculated by 
considering the interplay between the two constituent slabs. A 
gap is shown between the slabs for the sake of clarity. This 
method will also yield the radiance at mid-depth in the thicker 
slab. 
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and eigenfunctions, proving that  they form a 
complete set, and expanding the solution of the 
complete equation of transfer in terms of these 
eigenfunctions by imposing the correct bound- 
ary conditions. 

While elegant in principle, the method re- 
quires extensive mathematical  manipulation 
and has found limited application. Van de Hulst  
(10) has suggested that  the final equations are, 
in fact, equivalent to a solution in terms of X 
and Y functions. It is interesting to note that  the 
largest discrete eigenvalue and corresponding 
eigenfunction give, respectively, the diffusion 
exponent and diffusion pattern deep within the 
medium. The importance of these parameters in 
tissue optics is discussed in the subsection, 
Asymptotic radiation and hybrid methods. 

Approximate solutions of the radiative 
transfer equation 

In this section, we will discuss practical 
methods by which the equation of radiative 
transfer may be solved. As detailed below, these 
may involve approximate numerical solutions 
to the full equation, or physical assumptions 
which simplify the equation to one which can, 
itself, be solved analytically or numerically. 

Adding method 

The adding method is a powerful technique for 
computing the radiance at the entrance and exit 
surface of  a slab. Because it is incapable of pro- 
viding the radiance at arbi trary positions with- 
in the slab, its application to tissue optics is 
limited. Nonetheless, it is accurate and serves 
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as a useful check of other methods. The princi- 
ple, as first proposed by van de Hulst (20), is 
illustrated in Fig. 3. For a very thin slab (say of 
thickness equal to 2 -2~ one can write the 
radiance at the two surfaces from knowledge of 
the phase function, since multiple scattering is 
negligible. If one now adds an identical slab, the 
radiance at the surfaces of this thicker slab can 
be calculated by considering the successive 
scattering back and forth between the compo- 
nent layers. Computation for thicker slabs can 
be carried out by adding other thin layers or, 
more efficiently, by doubling the total thickness 
with each iteration. This doubling method has 
been used by van de Hulst (10) to generate a 
very useful set of results for slabs with a wide 
range of thickness, albedo and mean cosine of 
scattering angle. Another advantage of this 
technique is that  slabs of different optical prop- 
erties can be combined. This sort of in- 
homogeneity would constitute a reasonable 
model of the skin (21). 

Invariance methods 

These methods were pioneered by Ambartsu- 
mian (22) and will not be described in detail as 
the emphasis has again been placed on calculat- 
ing the radiance external to a slab. The basic 
idea is to consider the changes in radiance at the 
two surfaces of the slab in question when an 
infinitesimally thin layer is added to one of the 
surfaces. Because the added layer is thin, multi- 
ple scattering within it can be ignored and one 
can find the partial derivative of the function of 
interest with respect to slab thickness. Numer- 
ical integration then yields the radiance at the 
surface. Moaveni and Razani (23) have applied 
this method to the propagation of light in blood 
and Orchard (24) has used it to calculate the 
reflectance of suspensions of scattering parti- 
cles. 

Discrete ordinates methods 

The essence of this technique is the conversion 
of the radiative transfer equation to a system of 
linear algebraic equations suitable for numeric- 
al solution. To do this, the radiance L(r, [1) is 
represented only by its value at discrete values 
of the independent variables. In addition, the 
operations of differentiation and integration 
are replaced by their discrete counterparts, fi- 
nite differences and summation (or quadra- 
ture). 

For example, if we discretize the direction 
variable, t}, at N values in the equation oftrans- 
fer so that  

L(r, [2) --) L(r, ~N) -= tN(r) (11) 

then integrals over d~  become summations 

N 
Y4,~ d[1L(r, ~) = ~ wn in(r) (12) 

n = l  

where wn are the appropriate weighting factors 
for the numerical integration. The discretized 
equation of radiative transfer is thus 

f~n" F e n ( r )  + # t  t~n(r)  = 

N 
}~ Wn' d/~(Y2n,--) ~n)tn'(r) + Sn(r). (13) 

n'  1 

This set of equations is known as the SN equa- 
tions in the neutron transport  l i terature (12). 
This method ofdiscretizing the angular  depend- 
ence of the radiance has also been referred to as 
the N-flux method and has been lucidly de- 
scribed for the slab geometry by Mudgett  and 
Richards (25). The idea of discretizing the 
radiance is an old one and was first proposed by 
Schuster (26) who considered only the forward 
and backward flux. This 2-flux model was used 
in the familiar work of Kubelka and Munk (27) 
and, because of its wide application to tissue 
optics, is discussed in some detail below. Chan- 
drasekhar  (17) generalized the scheme and ap- 
plied the Gaussian quadrature technique now 
commonly used in the discrete ordinates 
method. 

We will now examine the 2-flux model using, 
initially, the formulation of Kubelka and Munk 
(27). These authors considered a forward flux i 
and a reverse flux j propagating in an infinite 
slab of thickness d. The differential equations 
describing i and j are 

- d i  = - (S + K)idx + Sjdx (14) 

dj = - (S + K)jdx + Sidx (15) 

where x = 0 at the uni l luminated face of the 
slab and S and K are modified scattering and 
absorption coefficients respectively. There are a 
number of explicit and implicit assumptions in 
the derivation of Eqs (14) and (15). These are: 

(i) The forward and reverse fluxes are integ- 
rals of the radiance over the appropriate hemis- 
phere. Specifically 

i(x) = j-~/2 f2~L(x, ~) cos 0 sin 0 d0d6 (16) 

j(x) = ~/2 ~2~ L(x, f/) cos 0 sin O d0d6. (17) 
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(ii) The modified scattering and absorption 
coefficients are not identical to those defined in 
Table 1. Rather, Kdx represents the fraction of 
flux (i or j) which is absorbed by a layer of in- 
finitesimal thickness dx. K is related to the true 
absorption coefficient, ~ a ,  by 

f~/2 f ~  L(x, f~) sin 0 d0d~b 
K = t~af~/2 ~/2  L(x, ~) cos 0 sin 0 d0d~b" (18) 

Note that,  in general, there is no simple relation 
between K and ~a and, in fact, K is even depth 
dependent if the radiance is not separable in x 
and [2. This distinction has not been appreci- 
ated by some investigators who have applied 
the model to tissue optics and this has resulted 
in some confusion in the literature. 

(iii) The original assumption by Kubelka 
and Munk was that  the radiance is isotropic in 
each hemisphere at all depths. Under this 
ra ther  unrealistic assumption K and S are the 
same for the forward and reverse fluxes and are 
given by 

K = 2 ]'s (19) 

S = /x~ (20) 

where Sdx represents the fraction of, say, for- 
ward flux which is scattered into the backward 
hemisphere by a layer of infinitesimal thick- 
ness dx. 

With these rather  restrictive assumptions 
the differential equations can be solved subject 
to the appropriate boundary conditions which, 
for a slab in vacuo, are 

i(x = d) = Io (21) 

j(x = 0) = 0 (22) 

where Io is the incident forward flux. The solu- 
tions are given by Kubelka (28) as 

a sinh(bSx) + b cosh(bSx) 
i = Io (23) 

a sinh(bSd) + b cosh(bSd) 

j = I o 

where 

and 

sinh(bSx) 

a sinh(bSd) + b cosh(bSd) 
(24) 

S + K  
a - - -  (25) 

S 

b = V~a 2 - 1. (26) 

It is also possible to derive explicit expressions 
for the scattered (or diffuse) reflectance, Rs, and 
the scattered (or diffuse) t ransmittance,  T~ 
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j(x = d) sinh(bSd) 
Rs - - -  - (27) 

Io a sinh(bSd) + b cosh(bSd) 

i(x = 0) b 
TS - - - -  (28) 

Io - a  sinh(bSd) + b cosh(bSd) 

Equations (27) and (28) have been the chief 
appeal of the Kube lka-Munk  model because S 
and K, and hence #s and t~, can be directly 
calculated from measurements of Rs and Ts. Of 
course the convenience of these formulas must 
be weighed against the very likely possibility 
tha t  the assumptions made in deriving them 
are incorrect! 

Various modifications to the Kubelka-Munk 
2-flux model have been made by van Gemert 
and Star (29), Mudgett and Richards (30), 
Reichman (31), Klier (32), Brinkworth (33) and 
Meador and Weaver (34). These authors have 
derived differential equations similar to Eqs 
(14) and (15) directly from the radiative trans- 
fer equation. These more general models have 
incorporated the effects of collimated beam inci- 
dence, anisotropic scatter and radiance, and in- 
ternal specular reflection at the slab bound- 
aries. Several authors have pointed out that  
Eqs (27) and (28) relating S and K to Rs and Ts 
can be retained i fa  simple physical definition of 
S and K is abandoned. Separate equations can 
be derived relating S and K to the true absorp- 
tion and scattering coefficients but there is no 
general agreement among the various authors 
on the exact form of these equations. For the 
case Of#a ~ (1 - g)#s, however, all these equa- 
tions reduce to 

K = 2 ~t a (29) 

S = 3(1 - g)t~s. (30) 

As absorption increases, the radiance be- 
comes more anisotropic and a 2-flux model may 
be inadequate. Mudgett and Richards (30) have 
advocated the use of a 4-flux model in an excel- 
lent didactic paper on the discrete ordinates 
method, and have shown that  this model gives 
excellent predictions for Rs and Ts when the 
angular  direction bins are properly chosen. The 
relative simplicity of this model suggests that  
its application to tissue optics should be further 
explored. Welch et al (35) have also reported the 
use of a 7-flux model in slabs with tissue-like 
optical properties. 

Functional expansion methods 

As in the discrete ordinates method, the goal of 
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this  technique is to reduce the integro- 
differential  equat ion of radia t ive  t ransfer  to a 
set of coupled differential  equat ions which can 
be solved by s tandard  techniques.  As opposed to 
the discrete ordinates  method,  where  a number  
of discrete directions of the radiance are consi- 
dered, the angu la r  dependence of the radiance 
is here approximated by a finite series expan- 
sion of orthogonal functions. While  several  
functional  expansions have  been used, a popu- 
lar  and general  set is the spherical harmonics.  
For a homogeneous slab the radiance m a y  be 
expanded in terms of the Legendre  polynomials  
P(/~), where/~ is the cosine of the angle,  0, be- 
tween the direction vector ~ and the inward  
normal  to the surface. In this  case the phase 
function f(~Y-~) is expanded in a series of 
Legendre polynomials  

1 
f(l~/''h) = ~ i (2n + 1)b~ P, ( f / ' . f / )  (31) 

n = O  

where or thogonal i ty  of the P ,  implies t h a t  

bn = ~4~ f(f / ' . / / )P~(f/ ' . f / )dt) ' .  (32) 

Note tha t  b~ = g, the average cosine of scatter- 
ing angle. 

As an example, consider the case of an inf ini te  
homogeneous slab i r radia ted  by a normal ly  in- 
cident beam. Star  et al (36) have shown t h a t  the 
equat ion of radia t ive  t ransfer  can be wr i t t en  
a s  

0 
t~ ~zz L(z,/~) + /~t L(z,/~) = 

#__.~s ; 4 v  L(z ,  /.t ') i ( 2 n  -}- 1)b, Pn(Y/'-Y/)d~' 
4~r n=O 

+ 47rn=/Is ~o (2n + 1)b, P,(/~)e - ~ .  (33) 

The various te rms  in Eq. (33) can be ident if ied 
by comparison wi th  Eq. (6). The last  t e rm repre- 
sents the in terna l  source of photons since it de- 
scribes the ini t ial  scat ter  from the incident  
beam. In this  formula t ion  L(z, tL) describes only 
photons which have been scat tered a t  least  
once, and the  uncollided beam mus t  be added to 
L(z,/~) to obtain the total  radiance.  An identical  
total  radiance would be obtained by solving Eq. 
(33) wi th  a zero source te rm and a non-zero 
incidence boundary  condition. For  most  func- 
t ional  expansions,  the former a l t e rna t ive  is 
more convenient.  

I fEq.  (33) is mul t ipl ied by (2m + 1)Pm(/~) and  
in tegra ted  over all directions 1~, one can gener- 
ate, wi th  the aid of a recurrence re la t ion for 
Legendre polynomials,  a set of equat ions  
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zo-----~11 [(m + 1)Pm+l(/~) + mPm-l(/Z)]L(z, /~)d/~ 

Q- [l  t f_l 1 (2m + 1)Pm(/~)L(z,/-t)dtt 

= /~ ~1 (2m + 1)bm Pm(tt')L(z, tz')d/~' 
1 

(2m + 1) 
+ /.t~ bme ~,z. (34) 

27r 

If  we also expand the  radiance  L(z,/~) in a series 
of Legendre  polynomials  so t h a t  

1 
(2n + 1)Ln(z)P,(/~) (35) L(z,/~) = 4~r n = 0 

and subs t i tu te  in Eq. (34) we can derive, aga in  
us ing  the  or thogonal i ty  of Prn(tt), a set of ordin- 
ary  different ial  equat ions  for the  coefficients 
Ln(z) of this  expansion 

- - [ ( m  + 1)Lm+l(z) + mLm_](z)] 
0z 

= - [/~a + (1 - bm)/~s](2m + 1)L~(z) 

+ (2m + 1)/~s brae -~tz. (36) 

By t runca t ing  this  set af ter  m = N, we obtain a 
set of(N + 1) equat ions  in the (N + 1) unknowns  
L,(z), n = 0 to N. 

This t runca ted  set of equat ions  is known as 
the PN equat ions  in the  l i t e ra ture  of neu t ron  
t ranspor t  (12). A special case of in teres t  is t ha t  
where  the expansion is t e rmina t ed  af ter  two 
te rms  so t h a t  the radiance is assumed to depend 
only l inear ly  on /~ and is said to be l inear ly  
anisotropic. In this  case we have  two differen- 
t ia l  equations:  

0 
az Lgz)  = /za Lo(z) + ,-s- e -~z (37) 

- -Lo(z)  -- - [/~a + (1 - g)/~J3Ll(z) 
0z 

+ 3/~s ge ~z. (38) 

We can e l imina te  Lx(z) to yield one equat ion  in 
Lo(z): 

32 
az 2 Lo(z) - 3tta /-ttr Lo(z) : 

- 3/~s/Ztre ~,z _ 3/~s/It ge - ~  (39) 

where  we have defined the t ranspor t  coefficient 

ttitr ---- /3. a + (1 -- g)t~s. (4) 

Now 

Lo(z) = 2~r _[! L(z,/z)d/z = O(z) (41) 



164 

so tha t  we have derived a differential equation 
for the energy fluence rate $(z). This equation is 
equivalent to the diffusion equation which, in 
general, may be written as 

~ a  -- So(r) 
V e $ ( r ) -  ~ -  $ ( r ) -  ~ + 3~'.$1(r) (42) 

where D, the diffusion coefficient, is given by 

1 
D - (43) 

3 ~ t r  

and So and $1 are the first two coefficients in the 
Legendre expansion of the general source func- 
tion s(r, [2). 

The diffusion or P1 model has been used by 
several investigators in tissue optics including 
Reynolds et al (37), Takatani  and Graham (38), 
Hemenger (39), Groenhius et al (40), Jacques 
and Prahl (41) and Star et al (36). The equation 
may be solved analytically for simple geomet- 
ries such as a slab i l luminated by a collimated 
beam or a point or cylindrical source in an intl- 
nite medium. These cases have been summa- 
rized by McKenzie (42) and a more exact treat- 
ment  has been published by Star et al (36). For 
more complex geometries or for inhomogeneous 
media, standard numerical methods for solving 
such differential equations may be used. It is 
worth rei terat ing that  the basic assumption of 
this useful model is tha t  the radiance is at most 
l inearly anisotropic. This will not be the case 
near sources or boundaries or if there is signifi- 
cant absorption in the tissue. We also note that  
boundary conditions cannot usually be exactly 
fulfilled in the diffusion approximation (12). 
More exact methods must be employed if de- 
tailed knowledge of the fluence is required 
under circumstances of strongly anisotropic 
radiance. Extension of the functional expansion 
method to higher Pn approximations is uncom- 
mon and it is more usual to use the discrete 
ordinates method. However, Storchi (43) has 
detailed the application of the method to the 
slab geometry, and Star et al (36) have pub- 
lished results of a P29 calculation for a slab with 
tissue-like properties. 

One additional attractive feature of the diffu- 
sion approximation is the straightforward ex- 
tension to time dependent problems. The 
appropriate equation is 

1 i~ 
- - -  ~(r, t) - D V 2 ~(r, t) + 
c i~t 

/~a O(F, t )  ~- S(s t) .  ( 44 )  

Patterson et al (5) have solved this equation 
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for the case of an infinitesimally narrow pulse 
~(r, t) incident on a homogeneous semi-infinite 
medium. Analytic solutions can also be written 
(44) for slab, cylindrical and spherical geomet- 
ries, and, as discussed above, finite difference 
methods could be used to tackle more complex 
geometries. As will be discussed in Part II (1), 
the impetus for developing these models has 
been the possibility of non-invasively probing 
tissue by measuring time resolved scattered 
t ransmit tance or reflectance. 

Monte CaHo particle simulation method 

In general, the term 'Monte Carlo method' re- 
fers to numerical evaluations or simulations 
based on random sampling from appropriate 
probability distributions. The two most com- 
mon applications are particle transport simula- 
tion and numerical integration. While numeri- 
cal integration could be used to evaluate the 
scattering integral in the radiative transfer 
equation, Eq. (6), particle simulations repre- 
sent the great majority of Monte Carlo applica- 
tions in radiative transfer. We will therefore 
restrict our discussion of Monte Carlo to par- 
ticle simulations, noting that  a simulation is 
not actually a direct solution to the radiative 
transfer equation. 

In the simplest algorithm, referred to as 'ana- 
log Monte Carlo', photons are injected into the 
medium one-by-one and their history is traced 
until  they are either absorbed or permanently 
scattered out of the region of interest. Para- 
meters such as the injection position, path- 
length between interactions, and scattering 
angle are randomly sampled from probability 
distributions based on the known physics of the 
problem. Quantities of interest, such as 
absorbed energy, are scored at desired locations. 
The data required (i.e. t~a, t~s, f(~"~))) are iden- 
tical to those required for solution of the radia- 
tive transfer equation. 

The Monte Carlo particle simulation method 
has the advantages of being conceptually sim- 
ple and allowing direct handling of complex 
geometries and optical inhomogeneities. The 
chief disadvantage is that  the method can be 
computationally expensive, and while faster 
and cheaper computers will help, a limiting con- 
sideration is that  the accuracy of scored quanti- 
ties increases only with the square root of the 
number  of photon histories. Techniques to im- 
prove the accuracy of Monte Carlo simulations, 
known as variance reduction methods, have 
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been reviewed by Carter and Cashwell (45). 
One very useful method, particularly applic- 
able to situations where scatter dominates 
absorption, is survival weighting. In this 
method, simulated photons are never- total ly 
absorbed but rather  are transported through 
the medium with an associated weight, as de- 
picted in Fig. 4(a). At each interaction, the frac- 
tion [ta/~t of a photon's weight represents depo- 
sited energy while the remaining fraction, 
t%/t~t, is the factor by which the photon's weight 
is reduced. 

Two other common variance reduction tech- 
niques are splitting and Russian roulette. Split- 
ting involves increased sampling in regions or 
directions that  are likely to contribute to scor- 
ing, while roulette involves decreased sampling 
for unfavourable photons, such as those that  are 
poorly located, directed, or have a very low 
weight. In the splitting technique, a favourably 
located or directed photon is split into v 'sub- 
photons', each of weight v-  1, thereby increasing 
the number  of trajectories while conserving to- 
tal photon weight. Likewise, Russian roulette 
involves random sampling that  terminates  an 
unfavourable photon with a probability 1 - v 
(0 < v < 1), so that  the photon survival proba- 
bility of v is accompanied by a compensating 
weight increase factor of v 1. A simulation in- 
volving splitting and roulette is depicted in Fig. 
4(b). 

Another common variance reduction tech- 
nique is the exponential transformation (46), 
which can be viewed as either an artificial ex- 
pansion of the interaction mean free path or a 
contraction of the medium. Typically, tLt is mul- 
tiplied by a parameter,  b(0 < b < 1), which may 
be constant or directionally dependent. This in- 
creases randomly sampled distances by the fac- 
tor b, thereby increasing the probability of large 
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Fig. 4. Depiction of variance reduction techniques used in 
Monte Carlo particle transport simulation. 

(a) Survival weighting with factor c~ =/~s/~.  
(b) Splitting of forward directed photons with parameter 

vsD,t = 2, and rouletting of reverse directed photons with 
parameter 1Jroulette - -  1/3. Note that only one in three reverse 
directed photons survives but that its weight is tripled. 

distances between interactions. As with all 
variance reduction methods, the photon weight 
must  be appropriately adjusted. 

While other variance reduction methods exist 
(45), the above methods involving biased sam- 
pling can be used simply and effectively to re- 
duce computation time. Each method should be 
applied, however, with some caution. A typical 
problem arises from setting the roulette para- 
meter,  v, too small or the exponential para- 
meter,  b, larger than unity, result ing in par- 
ticles of large weight that  can actually increase 
the variance in scored quantities. Biased sam- 
pling results should therefore be initially 
checked against  regular sampling results. 

The Monte Carlo method has been applied to 
t issue optics by Wilksch et al (4), Wilson and 
Adam (47), Jacques and Prahl (41), Groenhuis 
et al (40), Flock et al (48), and Peters  et al (49). 
This technique is finding increased application 
as computing power becomes more cheaply 
available. The method is also useful for check- 
ing the validity of approximate methods like 
diffusion theory under circumstances where 
other numerical methods are not feasible. 

As shown by Wilson et al (50), Jacques (51) 
and Hebden and Kruger  (52), the Monte Carlo 
method also provides a conceptually simple 
approach to time dependent problems involving 
the propagation of short light pulses. Simply 
maintaining a running total of path-length 
travelled allows the calculation of time resolved 
parameters  such as the scattered reflectance. It 
is worth noting that  t ime resolved Monte Carlo 
methods have some advantages even in calcu- 
lating steady-state quantities. For example, 
suppose the desired quant i ty  is the scattered 
t ransmit tance through a slab, Ts. A time- 
resolved Monte Carlo simulation can be per- 
formed to est imate T~o(t), the t ransmit tance for 
an incident short pulse when the slab has no 
absorption. The steady-state t ransmit tance for 
any absorbance can then be calculated as 

T~ = f~ Tso(t) e -~act dt (45) 

so that  one simulation provides T~ for the full 
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range of single scattering albedo. (This is simi- 
lar in concept to the successive orders method 
disussed above.) 

Random walk model 

In recent years Bonner and colleagues have 
published a number of interesting papers (53- 
56) in which a random walk model of photon 
propagation was used to solve for quantit ies 
such as the spatial dependence of scattered re- 
flectance arising from a point source. In the 
original paper (53), photon random walks occur- 
red on a cubic lattice where the lattice spacing 
was equal to the root mean square distance be- 
tween scattering events and absorption occur- 
red in the intervening space. This is equivalent 
to isotropic scattering, but later publications 
extended the application to anisotropic scatter- 
ing through the use of 'constrained walks'. 

In the limit of a large number of steps in the 
walk, it is possible to derive analytic express- 
ions for quantit ies of in teres t - -such as the 
probability of finding a photon at a certain dis- 
tance from a point source. It should be noted, 
however, tha t  a large number of steps corres- 
ponds physically to a low probability of absorp- 
tion. This model is therefore most useful in the 
wavelength regime where diffusion theory is 
also successful. In fact, Chandrasekhar  (57) has 
formally shown the correspondence between 
these two descriptions of particle transport. It is 
not clear that  there is any advantage in using 
one approach over the other. 

Asymptotic radiation and hybrid methods 

As summarized by van de Hulst  (10), a number 
of authors have shown tha t  deep within a 
homogeneous medium and far from any radia- 
tion sources, the fluence falls off with distance, 
r, as a single exponential e ~e~, where ~effis the 
effective at tenuat ion coefficient, and tha t  the 
radiance assumes a fixed angular  dependence. 

Fig. 5. Monte Carlo calculations of radiance showing the 
change from a transient radiance pattern near the surface of a 
semi-infinite slab irradiated by an infinite collimated beam, to 
a stable radiance or diffusion pattern at depth. The direction 
angle is relative to the direction of the incident collimated 
beam. The optical properties are typical of soft tissue in the 
scatter-dominated wavelength regime./% = 33 mm 1 ;/~a = 
0.033 mm-1; g - 0.95. Direction: •  0~ [], 63~ V,  90~ ~ ,  
153~ O, 180 ~ 

This so-called asymptotic field has been demon- 
strated in oceanographic measurements by Jer- 
lov (11) and, on a smaller scale, in aqueous sus- 
pensions of polyvinyl acetate and ink (58). In 
Fig. 5 we have used the Monte Carlo technique 
to il lustrate the transition from a 'transient'  
radiance distribution near the surface of a semi- 
infinite medium irradiated by an infinite colli- 
mated beam to the asymptotic field at sufficient 
depth. The region of asymptotic radiation 
occurs when the log radiance verus depth 
curves become parallel straight lines. 

Under conditions where diffusion theory ap- 
plies, the coefficient of exponential fall-off can 
be simply calculated by 

2 tteff---- 3 t ta [ t t  a + (1 -- g)#s] (46) 

and the fixed radiance pattern, also known as 
the diffusion pattern, Ld~f(O), is given by 

[1 + 3g(1 - a) ]'s COS 8] 
/-Left 

Ldif(0 ) = (47) 
[1 - /%--g-ff cos O] 

ttt  

Under more general conditions, it is still poss- 
ible to find tLe~ and Lair(0) from the integral 
equation 

( 1 - - ~ e f f  COS 0)Ldif(0)= a f~-i f[cos 0COS/3 

+ (1 - cos 2 0) ~ (1 - cos 2 fi)~']Ldif(fl)d(cos/3) (48) 

but the numerical solution is rather difficult if 
the phase function is highly anisotropic (10). 

The qualitative behaviour of the radiance at 
depth is, therefore, easily determined, but an 
absolute calculation of the radiance is much 
more difficult. This suggests that  hybrid models 
might  be developed which use more accurate 
numerical  methods near the surface but 'couple' 
these solutions at sufficient depth to the ex- 
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pression for the asymptotic field. Flock et al (48) 
have published the framework for such a model 
which combines Monto Carlo and diffusion cal- 
culations. 

SUMMARY AND DISCUSSION 

In this paper we have reviewed the mathema- 
tical description of light propagation in a 
medium in which the optical properties do not 
depend on the local electromagnetic field and 
the effects of multiple scattering are important. 
These conditions apply to many of the impor- 
tant  uses of light in medicine. While a mathe- 
matical description of this situation in terms of 
Maxwell's equation is theoretically possible, 
the detailed knowledge of tissue dielectric prop- 
erties necessary is not currently available. 
Radiation transfer theory, which essentially 
ignores wave-like phenomena such as interfer- 
ence, has instead been used to formulate an 
equation for the radiance in terms of absorption 
and differential scattering coefficients. While 
less satisfying from a theoretical standpoint, 
this formalism has been adequate to describe 
almost all experimental results. 

The solution of the radiative transfer equa- 
tion is a formidable task which has been the 
subject of several textbooks. While we have re- 
ferred to the classical methods of solution, our 
emphasis has been mainly on methods which 
have proven their  uti l i ty in tissue optics. The 
oldest of these is the 2-flux model which can still 
provide accurate results for tissue slabs with 
high scattering to absorption ratio. Currently 
more popular is the diffusion or P1 model which 
is easily generalized to arbi trary 3-D geomet- 
ries and which again provides accurate results 
far from sources and boundaries when scatter- 
ing dominates absorption. There are, however, 
wavelength ranges where neither of these mod- 
els provides reliable radiance or fluence cal- 
culations (1). The only method which is pres- 
ently capable of dealing with arbi trary 3-D 
geometries in this regime is the Monte Carlo 
simulation. While conceptually simple, this 
method usually requires substantial  computer 
resources for precise calculations. These re- 
sources are becoming more widely available, 
however, and it is likely that  tissue optics will 
follow the trend seen in other fields of radiation 
physics with such simulation studies becoming 
more prevalent. 

In the second part of this review, we will 
summarize current knowledge of the optical 
properties of tissues in the wavelength range 
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0.25-10 t~m. We will also discuss the methods, 
both direct and indirect, by which this informa- 
tion may be obtained. Both scattering and 
absorption coefficients of tissue vary with 
wavelength and there are regimes where the 
propagation is dominated by the effect of one of 
these processes. At other wavelengths, both 
processes must  be considered in calculating the 
fluence distribution in tissue. We will discuss 
the characteristics of the fluence distribution in 
tissue under these different circumstances and 
how the models discussed in Part  I can be most 
effectively applied. 
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